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Abstract: The growth of Internet of Agriculture Things (IoAT) with wireless technologies has resulted in significant advances 14 

for smart farming systems. However, various techniques have been presented to predict the soil and crop conditions. None- 15 

theless providing a quality-enabled autonomous system is one of the important research challenges. Furthermore, in the event 16 

of network overloading, most existing work needs help to handle trustworthy communication. As a result, this paper proposes 17 

a smart optimization model to develop reliable and quality-aware sustainable agriculture using machine learning. Firstly, the 18 

proposed model utilizes intelligent devices to automate the data collection and transmission. It analyzes the independent per- 19 

formance variables to support the consistent decision-making process for the forwarding scheme. Secondly, the proposed 20 

model investigated blockchain-based security principles for integrating the trusted system to reduce communication interfer- 21 

ence. The proposed model has been validated through simulations, and numerous experiments have demonstrated its efficacy 22 

regarding network parameters. 23 
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1. Introduction 25 

In recent years, wireless systems based on the Internet of Things (IoT) have seen significant growth in various 26 

industries. IoT is a network that allows physical devices, equipment, sensors, and other items to communicate 27 

without human intervention [1, 2]. Modern technologies are being implemented in the agriculture sector using 28 

wireless devices to increase farming productivity and management of costs. Precision agriculture uses smart IoT 29 

devices for remote sensing and monitoring crop conditions at various growth stages [3, 4]. One of the most sig- 30 

nificant economic sectors in many nations is agriculture, which emphasizes the significance of effectively manag- 31 

ing the water resources for plants, crops and maintaining the survival of agricultural land. Sensor systems are one 32 

of the most frequently used technologies in deploying precision agriculture. Remote sensing techniques have 33 

started interacting with IoT devices for autonomous functions using sensors' communication and data aggrega- 34 

tion functionalities. Several real-time situations exploring machine learning techniques with sensors enable tech- 35 

nologies such as transportation, medical, military, mobile phones, and household appliances [5, 6]. In modern 36 

times, several environmental changes affect crop and field conditions, and IoT-based systems aid farmers in in- 37 

creasing production and lowering yield costs. Current wireless communications solutions are integrated with 38 

cloud platforms to support smart agriculture development and may increase production productivity and prod- 39 

uct quality [7, 8]. However, agriculture related operations may be correctly accomplished using a reliable and 40 

more sustainable manner regarding sensing, identification, transmission, monitoring, and feedback capabilities 41 

[8, 9]. Secured technologies significantly perform authentic functionalities in a distributed manner and attain net- 42 

work integrity [10, 11]. However, agriculture systems with robust functionalities of machine learning models are 43 

required for efficient and lightweight communication paradigms. The private agriculture data must be trustwor- 44 

thy and protected from unauthorised access until it is received on valid storage and processing devices. The se- 45 

curity methods for the IoAT systems not only offer reliable information on farmer devices but also decrease the 46 

risks against sustainable communication. In this work, we aim to provide a model for the agricultural network 47 



 

 

using machine learning and eliminate the additional overhead on the devices. Moreover, the proposed model 48 

supports a security system with various techniques and protects IoT information from critical situations. 49 

The following is a summary of the research's significant contributions. 50 

i. Examines the available resources for the nodes to transmit the agricultural data at minimal cost using 51 

network edges. 52 

ii. Using machine learning, the route performance is computed regarding reliable decision-making and 53 

transmission consistency. 54 

iii. Proposed a a trusted IoT system to maintain data authentication and security from unauthorized disclo- 55 

sure. 56 

iv. The proposed model is validated by extensive tests and outperforms earlier research studies. 57 

The research paper is organized into the following sub-sections. Section 2 contains a discussion of the litera- 58 

ture review. Section 3 provides a detailed description and design of the proposed model. Section 4 contains the 59 

experimental results, while Section 5 presents the conclusion. 60 

2. Related work 61 

Developing numerous smart technologies using IoT networks has made intelligent farming systems possible. 62 

Based on intelligent algorithms, optimal decision-making systems are developed to efficiently perform complex 63 

operations for data management [12, 13]. Currently, global population growth needs smart agriculture to fulfill 64 

its needs. In addition, food security is a serious challenge among most nations due to decreasing environmental 65 

capital, restricted agricultural land supply, and more climate changes. Clustering-based approaches have proved 66 

an energy-efficient environment and increased the performance of wireless devices in the farm system. However, 67 

due to the significant delay and inefficient energy utilization , most existing studies can only be used for some 68 

smart farming applications. Therefore, a cost-effective and scalable protocol for remote monitoring and decision- 69 

making of farms in rural areas was presented to concentrate on smart farming applications [14, 15]. 70 

Furthermore, sensing nodes should be enabled to support robust services and observe environment manage- 71 

ment with energy-efficient and improved data delivery ratio. In this regard, cluster heads perform extraordinary 72 

responsibilities to transmit the crops' information to connected farmers using sink nodes. Authors [16] presented 73 

a system in which blockchain serves as the backbone, IoT devices collect data on the ground, and smart contracts 74 

control interactions among these stakeholders. The implementation of the system has been documented in dia- 75 

grams and extensive descriptions. The ultimate goal of this research was to show how blockchain can be immu- 76 

table, available, transparent, and safe in agriculture, as well as the robust mechanism that integrates blockchain, 77 

smart contracts, and IoT networks.  78 

In [17], the use of WSN technology in smart agriculture applications was investigated. The proposed research 79 

looked at the physical and functional power consumption of several WSN components. On the physical, data 80 

connection, and network layers, the analysis includes comparing the most commonly used protocols and discuss- 81 

ing their energy efficiency. The research's findings precisely identify the primary power consumers, the amount 82 

of power they consume, and a full understanding of the critical mechanisms that should be used to improve a 83 

WSN's energy efficiency. In [18], the authors explain how to efficiently aggregate and collect data in a smart agri- 84 

cultural system while maintaining privacy protection measures. It presents a framework that is both effective and 85 

scalable. The agricultural system employs the genetic algorithm to find the best data collection route. Introducing 86 

an unmanned aerial vehicle improves the communication efficiency of resource-constrained sensors in the system, 87 

allowing the complete agricultural system to be used for longer periods. According to the experimental investi- 88 

gation, the proposed framework offers good efficiency and scalability. Authors [19] introduced an agricultural 89 

IoT security architecture combining blockchain, fog computing, and software-defined networking. Their recom- 90 

mended security model consisted of three major components: an agricultural IoT data management system, a 91 

blockchain-based integrity monitoring scheme, and a virtual switch software supporting software-defined net- 92 

working technologies to improve network management. It is also tested against DDoS assaults using an open- 93 

source IoT platform integrating Hyperledger Sawtooth blockchain and software-defined networking technolo- 94 

gies.  95 

In [20], the authors investigated the design of wireless sensor nodes and networks for complicated agricul- 96 

tural environments. Moreover, their study also built a novel form of intelligent sensor network equipment to 97 

withstand the hard environment of agricultural manufacturing locations. It utilizeddecreases routing tasks, main- 98 

tains data accuracy in a vast agrarian base region, and assures network data performance and consistency. They 99 

also executed experiments to test the system's performance to establish an intelligent agricultural platform based 100 



 

 

on IoT and machine learning. However, accuracy was not reported. Different ways to provide security are dis- 101 

cussed in the literature, including trust management, intrusion detection, firewalls, and key management. When 102 

compared to other security solutions, trust management is one of them that can provide enhanced security. In 103 

[21], the authors presented a new secure routing algorithm called the energy-aware trust-based secured  routing 104 

algorithm (EATSRA). The trust score evaluation is used to detect malicious users in WSN. Spatial-temporal con- 105 

straints effectively are used with a decision tree algorithm to select the best route. The proposed trust-based rout- 106 

ing algorithm outperforms existing systems by performance metrics based on the experiments.  107 

Robust Cluster Based Routing Protocol (RCBRP) is presented by [22] to find the routing paths that consume 108 

the least energy and hence extend the network lifetime. To investigate it, the proposed strategy is given in six 109 

phases. First, the proposed solution is presented in two algorithms: i) an energy-efficient clustering and routing 110 

method and ii) an algorithm for calculating distance and energy consumption. By grouping the smart devices, the 111 

strategy uses less energy and balances the load. Extensive simulations in Matlab are used to validate the proposed 112 

solution. Next, the authors [23] introduced the information scheduling and optimization framework (ISOF). This 113 

framework optimizes information scheduling and classification to lower process delay and stagnancy. The delay 114 

and stagnancy towards the end of yields are used to calculate the control flexibility of a smart farm. The classifi- 115 

cation component separates information based on processing and completion times to eliminate backlogs through 116 

offloading. This framework inherits the benefits of edge computing and IoT with interoperable features to help 117 

with information processing, classification, offloading, and periodic updates. 118 

    The contribution and significance are summarized based on the discussed work. Smart agriculture can boost 119 

farm productivity and efficiency while keeping costs down. IoT provides a diverse platform for automating 120 

things, and smart agriculture is one of the most promising concepts for providing smart services. Most IoT-based 121 

solutions have provided energy-efficient strategies to ensure the agriculture sector's long-term feasibility. How- 122 

ever, a more reliable and long-term communication mechanism is still required due to the limits of sensors. Fur- 123 

thermore, agricultural devices must incorporate lightweight, trustworthy, and secure solutions to protect farmers' 124 

data. The proposed model should be able to securely and promptly provide agricultural data to farmers' mobile 125 

devices. 126 

 127 

3. Trust-based decentralized multi-regression model 128 

This section describes the details of the proposed model. The developed components are illustrated in Figure 129 

1. Devices initialization, fitness computational using machine learning, digital hashing, and blockchain-enabling 130 

security are the main components of the proposed model. The proposed model initially uses multi-regression 131 

analysis to identify the next hop for agricultural data transferring. Multi-regression is a statistical technique and 132 

it is used by many machine learning applications to identify the relation between dependent and independent 133 

variables. The objective function in the proposed model offers a statistical approach for analyzing the optimal 134 

result and is based on various network attributes. 135 

Moreover, IoT-based privacy-preserving for data collection and aggregation is also critical for reducing the 136 

data risk in agricultural growth. Our security mechanism is divided into three stages: sensors, edges, and data 137 

centers. First, agricultural data is protected while transferring from the sensors to edge devices. Second, the inter- 138 

mediate level, comprised of various edges, is protected from suspicious behavior. The incorporation of blockchain 139 

technology provides secured functionalities using distributed manner. In such a scheme, nodes perform authen- 140 

tication and integrity functions collaboratively without excessive overheads. Finally, the edged data is securely 141 

sent to data centers. 142 

 143 



 

 

 144 

 145 
 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

Figure. 1  Block diagram illustrating the proposed agriculture model 156 

3.1 Network registration with machine learning-based IoT system 157 
 158 
Initially, all the nodes register their information in the neighboring tables, so network data can be interchanged. 159 
All the nodes have unique identities with predefined energy, processing, and transmission constraints. No data 160 
transmission is allowed directly from sensor nodes to end-users. It only can be performed using the services of 161 
gateway devices. The gateways also perform aggregation and verification functionalities on the nodes’ data. Each 162 
IoT sensor initially looked up its local table for the transmission of agricultural data. Direct data is transmitted if 163 
an entry point to the edge device is detected. Otherwise, the source node investigates the route discovery strategy 164 
using multi-regression analysis. The proposed model uses many independent criteria to estimate the weighted 165 
score and achieve a more efficient decision-making system. Multiple regression analysis is explored during route 166 
discovery to predict the behavior of adjacent nodes and support a trustworthy optimal strategy [23, 24]. On the 167 
other side, the edges in the proposed model are mobile, which decreases the transmission distance toward data 168 
centers and lowers the overhead for the sensors’ tier. The proposed model formulates a numeric score for 169 
identifying neighboring nodes by defining the mathematical relationship between various random variables. Let 170 
us consider the set of neighbors of the node 𝑁𝑖, which can be defined as given in Equation 1. 171 

 172 
𝑁𝑖 =  (𝑛𝑖 , 𝑛𝑖+1, … , 𝑛𝑘)            (1) 173 

 174 
The list of neighbors is updated in the local table of 𝑁𝑖, and if any node no longer exists in its vicinity for any 175 

reason, its record is eliminated.  176 

 177 

The objective of the fitness function is to compute the least cost value 𝐶𝑖 for the source node. Later, based on 178 

the multiple regressional analysis, the agriculture data is forwarded to mobile edges. By exploring the neighbor's 179 

list, the source node computes the cost function using multiple independent factors, as defined in Equation 2.  180 

 181 
𝑋 = 𝛽0 + ∑ 𝛽i𝑦𝑖

𝑘
𝑖=0 + α            (2) 182 

 183 
where 𝑋 is the dependent variable, 𝑦𝑖  are random variables, and 𝛽0… 𝛽i denote constant terms. The con- 184 

stant terms denote the impact of each independent variable on the cost function. In the proposed model, the 𝑦𝑖  185 

value is the aggregation of composite parameters i.e. link behavior 𝑙b and nodes trust 𝑛t, as given in Equation 3. 186 
 187 

𝑦𝑖= 𝑙b + 𝑛t , 𝑖 ϵ 𝑁            (3) 188 
 189 



 

 

To compute the 𝑙b, along with residual energy 𝑒𝑖, the source node also explicitly keeps track of the packet 190 

buffering, as defined in Equation 4. 191 
 192 

𝑙b =  𝑒𝑖 + (𝑎𝑤 p
kt

 /𝑏𝑠𝑖𝑧𝑒)            (4) 193 
 194 

where 𝑎𝑤𝑝 is awaiting packets in the queue and 𝑏𝑠𝑖𝑧𝑒  is the buffer size. That means that a node with a high 195 

number of awaiting packets reflects the behavior of a congested link and has a low priority when choosing the 196 

next hop. On the other hand, 𝑛t is the composition of direct 𝐷𝑟  and indirect 𝐷𝑖𝑟  trust, by exploring the link be- 197 

havior as defined in Equation 5. 198 

 199 

𝑛t= 𝐷𝑟 + 𝐷𝑖𝑟              (5) 200 
 201 
3.2 Agricultural security for unreliable IoT environment  202 

 203 

This section provides the detail of the security algorithm for the proposed model. Data security is one of the 204 

most important criteria for smart communication over the Internet connections. In the proposed model, , the net- 205 

work data is first properly verified, and later forwarded using trust-oriented intermediate devices. The security 206 

system utilizes blockchain methods to assure data verification and denies interruptions from unauthorized nodes. 207 

Furthermore, it utilizes the functions of hashing and digital signatures to achieve authentication and data protec- 208 

tion. Firstly, the security system uses hashing techniques on the sensors' messages 𝑑𝑖  with secret key 𝑘 and gen- 209 

erates the fixed-length blockchain hashes 𝑃𝑖 , as given in Equation 6.  210 
 211 

𝐻(𝑃𝑖 ) = 𝐷(𝑑𝑖 , 𝑘), 𝑘 𝜖 𝐾𝑖           (6) 212 
 213 

The private keys of the nodes are used to encrypt the digital hashes further and provide data authentication. 214 

Afterward, all the generated hashes 𝑃𝑖 , 𝑃𝑖+1 , … . , 𝑃𝑛 are integrated as given in Equation 7.  215 
 216 

𝑍 = 𝐻(𝑃𝑖 ) +  𝐻(𝑃𝑖+1 ) + ⋯ +  𝐻(𝑃𝑖+𝑛 )          (7) 217 
 218 

The security system verified the data authentication by utilizing the nodes' public keys. Once the authentica- 219 

tion process is completed, the proposed model decrypts the encrypted data using appropriate secret keys. Figure 220 

2 shows the phases of the security system comprised of node verification, data blocks, digital hashes, and node 221 

authentication. Nodes must be connected and registered to a network's infrastructure to communicate with end 222 

users. Through the mutual authentication process, nodes' identities are first verified. If they are supposed to be 223 

hostile, they are marked as malicious and recorded such information in the routing tables. However, if nodes are 224 

reliables and their identities are verified, unique codes are created and combined into blocks to preserve data 225 

secrecy and integrity. Later, data is appropriately checked before being sent to smart devices. 226 
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Figure 2.  Algorithm for data authentication and security 247 

 248 

The flowchart for the route discovery with trusted communication is shown in Figure 3. The main procedures 249 

involve network initialization, evaluation of independent parameters, fitness computation, and digital hashing. 250 

Beginning with the identification of neighboring nodes, the machine learning technique is exploited to compute 251 

the fitness value. The fitness value explores the network data to provide a prediction value. In terms of energy 252 

effectiveness and reliability, the chosen nodes produce optimal results for the transmission of agricultural data. 253 

Moreover, the proposed model offers integrity and authentication functionalities for IoT devices through digital 254 

hashing. Furthermore, data is protected by the implementation of block-wise encryption and decryption tech- 255 

niques. 256 
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Figure 3.  Flowchart of the route discovery with trusted collaboration 259 

4. Simulation environment  260 

In this section, the simulation environment and an explanation of the experiments are provided. We compare 261 

our proposed model with earlier research studies. We used the Cooja simulator for creating the agricultural-based 262 

simulation environment with the support of wireless and IoT devices. Temperature, air pressure, and moisture 263 

sensors capture the data. The simulation settings for the set of experiments are listed in Table 1. A 300m x 300m 264 

space was used for the simulation tests. All the sensors are homogeneous in terms of communication resources. 265 

In experiments, edge devices act as mobile gateways and are rotated at 5m/s to 25 m/s. The packet size is set to 64 266 

bytes. We run the 25 simulations for the verification of experimental results. Initially, some stages of simulations 267 

are recorded in log files to get real-time data. Later, the proposed model utilizes such log files to extract the needful 268 

data in decision-making criteria. The simulations are executed with two scenarios i.e. varying sensors and the 269 

varying speed of edge devices. Finally, the proposed model is compared to ISOF, RCBRP regarding energy con- 270 

sumption, packet delivery ratio, network overhead, and data delay.  271 

Table 1: Simulation parameters 272 

Parameters Values 

IoT Devices 30, 60, 90, 120, 150 

Initial energy 2j 

Nodes and Sink deploy-

ment 

Random 

Packet size 64 bytes 

Transmission range 5m 

Simulation time  2000s 

Network diameter 300m x 300m 

Malicious devices 10 

Sensors  Temperature, air 

pressure, moisture 

 273 

4.1 Results analysis and discussion 274 



 

 

In this section, we present the discussion regarding performance metrics for the proposed model and other 275 

related studies. Also, the security analysis is provided for the proposed model in terms of proposed processes. 276 

The uniqueness of each IoT device is identified by its identity. No two nodes can have the same identities. How- 277 

ever, both are marked as malicious and block the incoming request or data. To initiate the network connection, 278 

the registration stage needs to execute and map the tables table information. To attain the privacy of the data, the 279 

proposed model executes lightweight encryption methods and generates different hashes using the cryptographic 280 

algorithm to achieve integrity as well. All the authentication errors are stored inside log files. All the blocks are 281 

inter-link in the form of blockchain technology, so it gives a very hard time for intruders to change the entire chain 282 

of data blocks. The verification is performed using digital signatures using private keys of data-originating nodes. 283 

Finally, we compared the proposed model to existing solutions regarding energy consumption. The contrast 284 

is shown in Figures 4(a) and 4(b), which show that the proposed model increased energy usage efficiency by 13% 285 

and 16%, respectively. It has been noticed that as the number of IoT sensors grows, so does the amount of energy 286 

consumed. On the other hand, the proposed model employs a fitness function to provide an intelligent energy 287 

solution and uses multi-variable regression analysis to provide updated routes smoothly. By utilizing fewer con- 288 

trol messages and retransmissions, the proposed model balances the energy consumption of the smart communi- 289 

cation system and extends the total lifetime. 290 

Moreover, with the supply of updated routes based on realistic data, the IoAT system incurs the least com- 291 

munication cost. In addition, updating routes based on realistic parameters reduces the communication load for 292 

the IoAT system, resulting in an efficient system. We compared the proposed model's performance with related 293 

strategies in terms of data latency. Figures 5(a) and 5(b) show the performance of the proposed model compared 294 

to existing solutions, revealing that the proposed model reduces end-to-end latency by 16% and 19%, respectively. 295 

It's because of the IoAT system's realistic parameters and the acquired data integration with regression analysis. 296 

The results ensure a fair distribution of node resources and accelerate the packet transmission process to smart 297 

devices. The mobile edges not only improve the efficiency of node bandwidth usage but also provide a minimal 298 

delay in evaluating and delivering the farmers' data to the cloud network. 299 

Furthermore, the security solution reduces unnecessary traffic by preventing hostile devices from flooding 300 

the green space interaction connection with fake route request packets. As a result, the suggested model improves 301 

the response time between the data requested and the deliverable system while maintaining a tolerable delay rate. 302 

Figures 6(a) and 6(b) show the proposed model's performance in terms of packet delivery ratio for various IoT 303 

sensors and the speed of mobile edges. Even in malfunctioning nodes, the proposed model dramatically boosts 304 

the delivery rate of data packets by 18% and 21%, respectively. It is because the devices' are trusted mutually 305 

based on the composite factors. Moreover, appropriate security methods are explored to achieve data privacy and 306 

authentication for sharing agricultural data. Digital hashing provides the rapid detection of rogue devices and 307 

increases the data integrity of the communication system. 308 

Furthermore, the edge devices are more durable and serve as a supervisor for sensor data received from the 309 

IoAT; after proper authentication, the data is supplied to the application user with significant rights. Figures 6(a) 310 

and 6(b) show the proposed model's performance in terms of packet delivery ratio for various IoT sensors and the 311 

speed of mobile edges. Even in the presence of malfunctioning nodes, the proposed model dramatically boosts 312 

the delivery rate of data packets by 16% and 17%, respectively. It is because the devices' are trusted mutually 313 

based on the composite factors. 314 

Additionally, appropriate security methods are explored to achieve data privacy and authentication for shar- 315 

ing agricultural data. Digital hashing provides the rapid detection of rogue devices and increases the data integrity 316 

of the communication system. Furthermore, the edge devices are more durable and serve as a supervisor for sen- 317 

sor data received from the IoAT; after proper authentication, the data is supplied to the application user with 318 

significant rights. Figures 7(a) and 7(b) show the comparison of the proposed model to the existing solutions 319 

regarding network overhead. Using different numbers of devices and speeds of mobile edges, it can be seen that 320 

the proposed model reduces overheads by 18% and 21%, respectively. This is due to the proposed model's ma- 321 

chine learning method to learn routing decisions and track the IoAT system effectively by investigating mobile 322 

edges. In the proposed model, multi-parameters re-evaluate forwarding states whenever any unreliable links are 323 

found in transmitting the farmer data. Furthermore, packet information increases the decision to predict the links' 324 

performance in the presence of unknown devices. Moreover, blockchain technologies create chain-oriented en- 325 

cryption and authentication phases to offer a trust-based security solution. 326 

 327 

4.2 Simulation graphs 328 

 329 
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(a)                                                (b) 331 

Figure 4.  energy consumption with varying sensors and mobile edges scenarios 332 
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Figure 5.  data delay with varying sensors and mobile edges scenarios 336 
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(a)                                                       (b) 339 

Figure 6.  packet delivery ratio with varying sensors and mobile edges scenarios 340 
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Figure 7.  nodes overhead with varying sensors and mobile edges scenarios 344 

5. Conclusion 345 

Agriculture systems are made up of many autonomous devices that collect, process, and transmit real-time 346 

data. These devices come with a variety of IoAT sensors to help with the development of smart communication 347 

and increase agricultural productivity. There have been numerous proposals for improving the performance of 348 

smart systems. Despite this, most of them need help to transfer massive amounts of data from farmers to wireless 349 

equipment with minimal latency and high-quality assurance. Security with trusted routing is also essential to 350 

protect sensitive data from unauthorized nodes. In intelligence, a technique for computing communication trust 351 

and routing strategies in farming systems using machine learning is required. The proposed model analyzed en- 352 

vironmental factors and verifies the reliability of the forwarding system by exploiting a multi-variable linear re- 353 

gression technique. Furthermore, trust-based security methods have been used to improve the efficacy of routing 354 

decisions. According to simulations, the proposed model delivers significant performance by lowering commu- 355 

nication costs and improving data security by eliminating link disruption. In the future, we will evaluate the 356 

performance of the proposed model against intrusion detection with the support of a large-size dataset. Moreover, 357 

the mobile cloud communication paradigm needs to be included to further improve the proposed model. 358 
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